TFAWS Interdisciplinary Paper Session

Unlock the Power of Your ROM

Presented By

Derek Hengeveld Senior Engineer | LoadPath dhengeveld@loadpath.com

> Thermal & Fluids Analysis Workshop TFAWS 2017 August 21-25, 2017 NASA Marshall Space Flight Center Huntsville, AL

Veritrek

Thermal Desktop

Powerful thermal-fluid systems analyzer

Veritrek Exploration Tool 1,000s of processed simulation results in seconds

Reduced-Order Models

- ROMs enables faster, more effective exploration of your data.
 - Enables real-time results
 - Intuitive user interface encourages collaboration
 - More effective data exploration through advanced analysis capabilities

- Reduce modeling costs
- Enable more optimized designs
- Improve schedules though faster analysis
- Fosters collaboration
- Built for Thermal Desktop®

What is a ROM?

An accurate surrogate of a high fidelity model

Based on intelligent sampling then data fitting

 Sampling based on Latin Hypercube methods

 Data fitting based on Gaussian-Process methods

Sampling and Data Fitting

Approach

Approach

- Based on sample of computer simulations
- Capture effects between sampling points

Advantages

- Fast computations
- Useable by 'non-trained' personnel

Disadvantages

- Captures a limited set of possible variables
- ROM creation time

Sampling

 X_2

- Latin Hypercube Sampling
- A method for efficiently filling a design space
- The range of each Input Factor (e.g. X) is divided into N intervals
 - N = number of samples
 - Each interval is used only once
- Maximize the minimum distance between points
- Using pseudo-Maximin Method
 - Maximize the minimum distance between sampling points

 X_1

N = 4

 X_1

2 factors | 8 sampling points

Data Fitting

- Gaussian Process
- Does not impose a specific model structure
 - E.g. 'f(x) = mx + c' not needed
 - Can fit a wide-range of data without prior knowledge of 'shape'
- Based on training data
 - E.g. simulation results $k(x_i, x_j) = v^2 \exp\left(\frac{\|x_i x_j\|^2}{2l^2}\right)$
 - Resulting covariance matrix populated using kernel function
 - Optimized hyperparameters needed
- Can fit data exactly; useful for computer simulations
- Provide confidence intervals

History

- 2009 Initial work
- 2010 "Development of a system design methodology for robust thermal control subsystems to support responsive space", Dissertation.
- 2011 Thermal control for ORS satellites, DoD SBIR Ph I
- 2012 Thermal control for ORS satellites, DoD SBIR Ph II
- 2013 Advanced spacecraft thermal modeling, NASA SBIR Ph I
- 2013 Advanced spacecraft thermal modeling, NASA SBIR Ph II
- 2016 "Reduced-order modeling for rapid thermal analysis and evaluation of spacecraft", 46th AIAA Thermophysics Conference
- 2016 "Reduced-order modeling for rapid thermal analysis and evaluation of spacecraft", Thermal and Fluids Analysis Workshop.
- 2016 "Reduced-order modeling for rapid thermal analysis and evaluation of spacecraft", Spacecraft Thermal Control Workshop

Initial Work

- Evaluated approach using nominal satellite design
 - 1.0 x 1.0 x 1.0 m cubic satellite
 - Honeycomb construction
 - Body-mounted radiators
- Input factors (11 total)
 - 3 categorical (orbit/heat pipe/optimized placement)
 - 8 continuous
- Output responses (3 total)
 - Maximum orbital temperature
 - Minimum orbital temperature
 - Maximum temperature difference

Y L IF				
LabelFactor		Variable	Low	High
		Name	Value	Value
A	Orbit	ORBIT	Cold-case	Hot-case
В	Total Component Power	TOT_PWR	60 W	600 W
C	Component Side Dimension	C_DIM	0.1 m	0.2 m
D	Component Interface Heat Transfer Coefficient	C_I_CND	110 W/m ² -K	$700 \text{ W/m}^2\text{-K}$
Е	Facesheet Material Transverse Thermal Conductivity	F_T_CND	170 W/m-K	1000 W/m-K
F	Heat Pipes	HT_PIPE	0	10 per panel
G	Panel-to-Panel Thermal Conductance	P2P_CND	12 W/K	36 W/K
Η	Surface Solar Absorptivity	EXT_ABS	0.123	0.561
I	Surface Longwave Emissivity	EXT_EMS	0.100	0.900
J	Global Component Distribution	GLBL_DIS	Nominal	Optimized
K	Local Component Placement	LCL_PLC	Nominal	Optimized

Initial Work

- Reduced-order model was developed
- Utilized Latin Hypercube / Gaussian Process
- ROM evaluated at 100 random test points
- ROM versus computer simulation (CS) results
- ROM provides good performance (i.e. dotplot results)
- Mean value near 0 K
- Standard deviations are acceptable

Response	Mean Standard Deviati	
	[K]	[K]
Tmax	-0.1448	1.547
Tmin	0.06414	1.077
Tmaxd	0.08643	1.518

NASA ROM

- Orion Crew Exploration Vehicle (CEV)
 - External fluid loop
 - Heat rejection system (radiators)
 - Control setpoint (FLOW.487)

Results

- CS results compared to ROM
- Residual mean (trueness)
- Standard deviation (precision)
- Temperature: 1.6 K max residual mean and 5.0 K standard deviation
- Power: 0.2 W max residual mean and 1.93 W standard deviation
- Did poor job of replicating output responses with discontinuities

Figure 1: Galden HT 170 RO versus CS Plots for Two Output Responses: Pressure (FLOW.2272) and Average Radiator ΔT (768 LH Sample Points)

Creation Tool

- Alpha version
- Beta version
 - TD 6.0 API
 - Improved sampling/data fitting

Exploration Tool

Screening Analysis

- Shows relative importance of input factors for a given output response
- Displayed using a Pareto chart bar graph
- Larger bar signifies more impact on the output response

Acknowledgements

VERITREK

Learn More

- Learn more at TFAWS
 - Hands-on session: Tuesday, August 22, 2017 | 3 to 5:00 PM |Med I
- Join an upcoming webinar
 - Tuesday, August 29, 2017: 9 AM MDT
 - Thursday, August 31, 2017: 2 PM MDT
 - Wednesday, September 6, 2017: 9 AM MDT
- Download a free trial from Veritrek.com